
1

8 Copyright IBM Corporation, 2004. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to make
available any products referred to herein.

CL Compiler
Enhancements

Guy Vig
Senior Software Engineer

(gwvig@us.ibm.com)

2

© 2004 IBM Corporation Page 2

“General” CL Commands
• There have been new and changed IBM CL

commands in EVERY release
• For V5R3:

57 new CL commands
247 changed CL commands

3

© 2004 IBM Corporation Page 3

Binary (Integer) Variables
• New TYPE values on DCL statement
• Values *INT and *UINT chosen for
consistency with PARM TYPE values

• LEN(2) and LEN(4) supported
• Much "cleaner" than using %BIN
• Passing parameters to APIs
• Passing parameters to other HLL programs

4

© 2004 IBM Corporation Page 4

Control Flow Enhancements
• Three “flavors” of DO loop commands

– DOWHILE, DOUNTIL, and DOFOR
– Up to 25 levels of DOxxx nesting supported

• Loop control flow commands
– LEAVE and ITERATE

• Case/subcase commands
– SELECT, WHEN, OTHERWISE, and ENDSELECT
– Up to 25 levels of SELECT nesting supported

5

© 2004 IBM Corporation Page 5

DOWHILE Loop
• Same COND support as IF statement in CL
• Evaluates COND at "top" of loop
• Old-style coding example:

DCL VAR(&LGL) TYPE(*LGL)

:

CHECK: IF COND(*NOT &LGL) THEN(GOTO DONE)

: (group of CL commands)

GOTO CHECK

DONE:

• New-style coding example:
DOWHILE COND(&LGL)

: (group of CL commands) body will be run zero or more times
ENDDO

6

© 2004 IBM Corporation Page 6

DOUNTIL Loop
• Similar COND support as IF statement in CL
• Evaluates COND at "bottom" of loop
• Old style coding example:

DCL VAR(&LGL) TYPE(*LGL)

:

LOOP:

: (group of CL commands)

IF COND(*NOT &LGL) THEN(GOTO LOOP)

• New style coding example:

DOUNTIL COND(&LGL)

: (group of CL commands) body will be run one or more times
ENDDO

7

© 2004 IBM Corporation Page 7

DOFOR Loop
• Syntax:

DOFOR VAR() FROM() TO() BY()
• BY defaults to '1', other parameters are required
• VAR must be *INT or *UINT variable
• FROM and TO can be integer constants, expressions, or

variables
• BY must be an integer constant (can be negative)
• FROM/TO expressions are evaluated at loop initiation; TO

evaluated after increment
• Checks for loop exit at "top" of loop (like DOWHILE)

8

© 2004 IBM Corporation Page 8

DOFOR Loop (continued)
• Old-style coding example:

DCL &LOOPCTL TYPE(*DEC) LEN(5 0)
DCL &LOOPLMT TYPE(*DEC) LEN(5 0)
:

CHGVAR &LOOPCTL VALUE(1)
CHECK: IF COND(&LOOPCTL *GT &LOOPLMT) THEN(GOTO DONE)
: (group of CL commands)

CHGVAR &LOOPCTL VALUE(&LOOPCTL+1)
GOTO CHECK
DONE:

• New-style coding example:

DCL &LOOPCTL TYPE(*INT) LEN(4)
DCL &LOOPLMT TYPE(*INT) LEN(4)
:

DOFOR VAR(&LOOPCTL) FROM(1) TO(&LOOPLMT) BY(1)
: (group of CL commands) body will be run zero or more times

ENDDO

9

© 2004 IBM Corporation Page 9

LEAVE and ITERATE
• Allowed only within a DOWHILE, DOUNTIL or DOFOR group
• LEAVE passes control to next CL statement following loop

ENDDO
• ITERATE passes control to end of loop and tests loop exit

condition
• Both support CMDLBL (Command label) parameter to allow

jump out of multiple (nested) loops
– Both default to *CURRENT loop

• Example:
: (group of CL commands)

IF (%SST(&*NAME 1 10) *EQ ‘*NONE’) THEN(LEAVE LOOP1)

ELSE (DO)

IF (%SST(&*NAME 11 10) *EQ ‘*LIBL’) THEN(ITERATE)

ENDDO

: (group of CL commands)

10

© 2004 IBM Corporation Page 10

SELECT Group
• SELECT starts a group; this command has no parameters
• ENDSELECT ends group; this command has no parameters
• Group must have at least one WHEN

– WHEN command has COND and THEN parameters (like IF)
• OTHERWISE (optional) run if no WHEN COND = True

– OTHERWISE command has only CMD parameter (like ELSE)
• Example:

SELECT

WHEN COND(&TYPE *EQ *CMD) THEN(DO)

: (group of CL commands)

ENDDO

WHEN COND(&TYPE *EQ *PGM) THEN(DO)

: (group of CL commands)

ENDDO

OTHERWISE CMD(CHGVAR &BADTYPE ‘1’)

ENDSELECT

11

© 2004 IBM Corporation Page 11

Enhanced File Support
• Will support up to 5 file "instances" using DCLF
• Instances can be for the same or different files
• New OPNID (Open identifier) parameter added to
DCLF statement

• Default for OPNID is *NONE
–Only one DCLF allowed with OPNID(*NONE)

• OPNID accepts simple name, up to 10 characters

12

© 2004 IBM Corporation Page 12

File Support (continued) ...

• If OPNID specified, declared CL variables are
prefixed by this name and an underscore (e.g.
&MYTESTFILE_CUSTNAME)

• OPNID added to existing file I/O CL commands
– RCVF
– ENDRCV
– SNDF
– SNDRCVF
– WAIT

13

© 2004 IBM Corporation Page 13

Increased max size for *CHAR
• Old limit was 9999 bytes for TYPE(*CHAR)
• New limit is 32767 bytes for TYPE(*CHAR)
• DCLF will (still) not generate CL variables for
character fields longer than 9999 bytes in a
record format; same compile-time error

• Limit for TYPE(*CHAR) and TYPE(*PNAME)
on PARM, ELEM, and QUAL command
definition statements stays at 5000 bytes

• VALUE (on DCL) limited to first 5000 bytes

14

© 2004 IBM Corporation Page 14

Increased number parameters
• Previous limit was 40 for PGM and TFRCTL,
and 99 for CALL command

• New limit is 255 parameters for PGM, CALL,
and TFRCTL

• Limit for CALLPRC (only allowed in ILE CL
procedures) will stay at 300

• Number of PARM statements in a CL
command will increase from 75 to 99

15

© 2004 IBM Corporation Page 15

Passing parameters "by value"
• CALLPRC (Call Procedure) command
supports calls from ILE CL procedures to other
ILE procedures

• In prior releases, CALLPRC only supported
passing parameters "by reference"

• Can specify *BYREF or *BYVAL special value
for each parameter being passed

• Enables ILE CL to call many MI and C
functions and other procedure APIs

• Maximum numbers of parameters still 300

16

© 2004 IBM Corporation Page 16

Run New Support on V5R2
• Normally, new CL function can only be used in a
CL procedure (i.e. CL program or CL module) if
*CURRENT is specified for TGTRLS parameter

• This isn’t a “normal” release for the CL compiler!
• CL team wants to remove roadblocks to having
CL programmers use new CL compiler function

• There will be V5R2 and V5R3 PTFs to allow
developers to use new CL compiler function
(except multiple DCLF) on V5R3 and compile
specifying TGTRLS(V5R2M0)

17

© 2004 IBM Corporation Page 17

PTF numbers
• V5R3 (base OS and option 9)

– SI13505
– SI13508
– SI13509

• V5R2 (CL runtime)
– SI13416
– SI13417

18

© 2004 IBM Corporation Page 18

Follow-on CL Improvements
• V5R3 is the biggest release for CL compiler
enhancements since ILE CL compiler in V3R1
–Most new CL compiler function since System/38

• But we’re not done yet!
• Currently working on next set of enhancements
• Your opportunity to provide early feedback/input

19

© 2004 IBM Corporation Page 19

Subroutines
• Simple code block between SUBR and
ENDSUBR statements

• Invoked by new CALLSUBR statement
– No argument/parameter passing
– Optional RTNVAL can specify 4-byte *INT variable
– No local scoping of subroutine variables
– No nesting allowed (subroutines in subroutines)

• Return to caller via RTNSUBR or ENDSUBR
• Would not allow GOTO to enter or leave the
body of a subroutine

20

© 2004 IBM Corporation Page 20

Pointer CL variables
• Add TYPE(*PTR) on DCL statement
• New %ADDRESS built-in to set pointer
• New %OFFSET built-in to store pointer offset
• Add STG(*BASED) attribute on DCL
statement

• Makes many functions available to ILE CL
– Full record-level file I/O
– String functions

21

© 2004 IBM Corporation Page 21

Defined-on CL variables
• Add STG(*DEFINED) attribute on DCL
statement

• Must give name of defined-over CL variable
(new DEFVAR attribute on DCL statement)

• Can optionally provide starting position
(default = 1) from beginning of the defined-
over CL variable

• Useful for varying-character fields and
providing simple structure capability

22

© 2004 IBM Corporation Page 22

Other possible improvements
• Longer CL variable names (& + 30 characters)
• Arrays (single-dimension)
• Structures (one-level deep nesting)
• CL source includes in QSYSINC library
• Compile from stream file
• INCLUDE of source member or stream file or
record format

• Allow MAX > 300 for a PARM/ELEM on *CMD
• Soft remove of obsolete command parameters

23

© 2004 IBM Corporation Page 23

Continuing CL improvements
• Intention is to keep adding improvements
• We want to deliver enhancements that will
delight iSeries customers, including business
partners
–If we're hitting the mark, tell an IBM exec
–If we missed, tell me

• Funding at risk if little or no positive customer
feedback

24

© 2004 IBM Corporation Page 24

Summary
•Recognition by IBM that having “healthy”
CL is important to existing and future
iSeries customers

•Continued investment in providing CL
commands

•Biggest changes to CL compiler since
System/38

25

© 2004 IBM Corporation Page 25

Thank
YOU

26

© 2004 IBM Corporation Page 26

8 IBM Corporation 1994-2004. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country.

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Other company, product or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly available sources and does not constitute an
endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly available information, including vendor announcements and vendor
worldwide homepages. IBM has not tested these products and cannot confirm the accuracy of performance, capability, or any other claims related to non-IBM products. Questions on the
capability of non-IBM products should be addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your local IBM office or IBM
authorized reseller for the full text of the specific Statement of Direction.

Some information addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to specific levels of performance, function or delivery
schedules with respect to any future products. Such commitments are only made in IBM product announcements. The information is presented here to communicate IBM's current investment
and development activities as a good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience will
vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

Trademarks and Disclaimers

IBM (logo)
IBMeServer
iSeriesAS/400

